Human-Centered Intelligent Systems for Mission Operations

Jane T. Malin and team

Intelligent Systems/Human Centered Systems Project Review 10/24/02

Team Members

- Analysis and design methods
 - Carroll Thronesbery, Kathy Johnson, David Overland
- System management agents and simulation
 - Debra Schreckenghost, Land Fleming and Lou Flores
- Information assistant agents and team tools
 - Arthur Molin, Grace Lei, Dan Smith, Patrick Oliver, David Overland
- Team tools and mission spin-offs
 - David Overland, Gene Peter and Kevin Taylor (DV) and Kathy Johnson (SD – SMART project for SURGEON/BME)

Project Objectives

- Cooperating intelligent agents for future heterogeneous distributed multi-tasking teams
 - Intelligent Systems Management Agents
 (ISMAs) designed for multi-agent teamwork
- New human-centered methods for prototyping intelligent agents and their operations infrastructure

FY01 Findings

- Need additional type of agent to support operations teams
 - Information management agents: Intelligent Briefing and Response Assistants (IBRAs)
 - Customizable, simpler, using same tools as operations team
- Importance of infrastructure and work integration
 - Need suite of information handling tools for agents and operations teams,
 - Support incremental agent development

FY01 Operations Concept: Space and Ground Periodic Cognizance/orienting with Support for Team Response

Vehicle/crew

- Increased level of crew/vehicle autonomy
- Includes both crew and ISMA software
- Software does the vigilant monitoring
- Crew manages by exception

Multi-discipline officers

- Includes both person and IBRA software
- Vigilant monitoring, notify specialists of problems
- Works shifts in mission control center (MCC) only

Discipline specialists

- Flight controller functions
- Intermittent monitoring
- Works in MCC and office
- Includes both person and IBRA software
- Responsibilities beyond current mission

FY01 Linked Tools Concept: Used by Agents and Team Members

A team member enters content once, for use in multiple places

FY02 Task Areas

- Testbed for autonomous control agent
- Agent information and control
- Information handling tools and infrastructure for agent communication and control
- Human-centered methods for designer-developer teams

Testbed Architecture: ISMA, Simulation, Case Server Recording a Case for Playback

Testbed Architecture: Life Support Control Scenarios Playing Back a Case

Instructions for Intelligent Briefing and Response Assistants

- Inspired by mission operations Anomaly Response Instructions (ARIs)
 - For Station Duty Officers (SDOs) before the Space Station was manned
 - Filter, organize and distribute information on system status and anomaly response

ECLSS01 - NODE 1 RAPID DEPRESS

PURPOSE: To provide the SDO required actions upon receiving the ECLSS01 - Node 1 Rapid Depress ELOG Message

BACKGROUND: There is no onboard calculation of Node 1 rapid depressurization. A ground comp is used to calculate the Node pressure decay rate. The comp is susceptible to giving false readings if there are data interruptions or if there is a cabin pressure sensor bias or failure.

PROCEDURE

- 1. From the SDO display, record Node 1 cabin pressure.
- 2. From the SDO display, record Node 1 dPdt.
- 3. From the ECLSS SDO RTPLOT, check Node 1 pressure decreasing. Record slope, then multiply by 60 to get mm/hr.
- 4. If, after 30 minutes, there is a decrease in Node 1 Cabin pressure, call ECLSS, HSG, CATO, and Flight.

Briefing and Response Instructions

- Recognize complex patterns in input data
 - Use XML as the common data format
- Trigger actions in response to those patterns
 - Uses existing rule-based engine
 - Invoke user's tools
- BRI rules
 - Easily generated and modified
 - Flexible and powerful

Example Briefing and Response Instruction Code

```
<lml:rule name="co2 conc accum low">
    <lml:lhs>
         <Activity>?a</Activity>
         <new-value>
             <time> ?t&(?t>1) </time>
                                                                If CO<sub>2</sub> concentration
             <variable>'co2-concentration hc tank'</variable>
             <value> ?v&(?v<8500)</pre>
                                                                < 8500
         </new-value>
                                                                Make log entry
    </lml:lhs>
    <lml:actions>
         <elogger>
             <attr name="loggerURLString"
               value="http://gandalf/hcast/logger/insert_into_log.cfm" />
             <attr name="loggeragent" value="IBRA" />
             <attr name="loggertimestamp" value="?t" />
             <attr name="loggerlog_text"
               value="[IBRA] Low concentration detected in VCCR: ?v below 8500" />
         </elogger>
    </lml:actions>
</lml:rule>
```

Logger: Log entries with metadata

Taking Advantage of ISMA High Level Information

- Intelligent System Management Agents support routine system management, assessment and safing
 - Not only monitor, detect and respond (e.g., safe the system), but also assess and plan
 - Use high level assessment, planning and procedure information to support supervision and anomaly response
 - New levels of intervention in procedures or plans?
 - New types of information about systems and ISMAs
 - Conveyed to team members by IBRAs using tools

IBRA-Generated Event Report with ISMA Information (Print Version)

VCCR Shut Down

Report generated 295/15:09

<u>Author</u>

IBRA Instruction VCCR_Shutdown

Trigger Value

VCCR Shutdown

Cause of Shutdown

Bed 3 leak

Time of shutdown

295/07:18

Procedure

PERFORM-CO2-DIAGNOSTICS

FIX-VCCR-PROBLEM-AMBIGUOUS-STATE

MONITOR-ARS

Result

DIAGNOSTIC-PERFORMED GC-DEGRADED

Evidence of problem [plot]

Action taken

Maintenance entered in crew schedule

Caution

Watch cabin CO2 concentration for health risk to crew

[Text added by ECLSS in IBRA instruction]

Comments

Report Maker: Create and Use Editable Report Formats

Example Handover Report (Editable Format)

WorkIT: Organized and searchable Issue Workspaces with Actions, Reference materials, Status of tasks and issues

Team Work Center: Portal into Tools and Recent Work of Flight Discipline

WORK Recent ECL	CC Wankens	rous.					Search	Help Feedback	Admin Lo
Date Modified	Status	Workspace	Options Workspace Name				ID	Discipline	
0/21/02	Open	DESCR	Actions		ous VCCR Shutdow	n 293/18:21		ECLSS1157W	ECLSS
8/02/02	Open	DESCR	Actions		Unexpected Shutde			MER-0316	ECLSS
6/10/02	Open	DESCR	Actions		k rate higher than ex			MER-0348	ECLSS
1/17/02	Open	DESCR	Actions		PO Fan Failure			MER-0328	ECLSS
0/28/01	Open	DESCR	Actions		<u>hutdown</u>			ECLSS1151W	ECLSS
6/13/01	Closed	DESCR	<u>Actions</u>		ntaminated with Wa			MER-0397	ECLSS
5/30/01	Closed	DESCR	<u>Actions</u>		2 Electrometer Satur			MER-0390	ECLSS
4/17/01	Closed <u>DESCR Actions</u> <u>High Cadmium Level</u>				dmium Levels in Wa	<u>ater</u>		ECLSS1122W	ECLSS
0/21/02 19:07:57	Daily		10-20-200		10-21 19:00				
0/21/02 19:07:16	Handover .		10-21-200		10-21 10:40				
0/21/02 19:05:35		20,4110.22	10-21-200		10-21 10.70				
	VCCR Started 294/18:23 VCCR Shut Down 294/18:22								
0/21/02 19:04:46	VCCR Shut D	own 294/18:22	10-21-200	2 18:22					
Recent ECL									
Recent ECL	SS Actions Due Date	Priority Titl	le			Workspace Anomalous VCCR	D	Assigned	l To

Human-Centered Methods for Development Teams

- Process and products for rapid prototyping teams
 - Designers, developers, users
 - Boundary objects for human-centered teams
 - Shared objects to talk about, think with, coordinate perspectives of constituencies (G. Fischer)
- Two different types of designer-developer teams
 - Electronic Console Logger and Report Maker
 - Tight team integration, one of developers is past user
 - WorkIT Evaluation and Enhancement
 - Loose team integration (separate organization), developer is not past user

HCS Evaluation Products

- Formative evaluation of prototype
 - Not just "How well did we do?"
 - What improvements and new capabilities are needed?
- Throughout Phases
 - Phase 1: Analysis Phase
 - Phase 2: Development Phase
 - Phase 3: Assessment and Refinement Phase
- Using Boundary Objects: Artifacts, use cases, annotated screen shots, annotated sketches

CAPCOM Log Artifact

Analysis Phase

- Goal: Gain enough understanding of the user task to design the first approximation to supporting it
- Initial interview(s) with the user to obtain
 - Use Case Scenarios
 - Artifacts what is used and produced to meet task demands now?
 - Characteristics of team tasks and communication
 - Review of possible support strategies (partial designs)

BME Log Artifact

Prototype Development Phase

- Steer the implementation to support design intention
 - Spiral development
 - Reevaluation and planning as each core function is developed
 - Controlled requirements creep (no loss of focus)
 - Continual feedback between designers and developers
 - Analyze design decisions that make implementation difficult
 - Find efficient design alternatives that fit design intentions
 - Communication formats
 - Design support: Boundary objects (artifacts, annotated sketches and snapshots, partial prototypes)
 - Management support: WorkIT actions to track development tasks

Developers Links to Artifacts

Annotated Screen Snaphot

Annotated Sketch

WorkIT Actions: Track Problems

Assessment and Refinement Phase

- Use case test by designers
 - Can designers perform user tasks as expected?
 - Reproducing artifacts keeps evaluation focused on user tasks
- Initial evaluation user performs basic tasks
 - Address 3 Us (understanding, usefulness, usability)
 - Use case scenarios keep evaluation focused on the tasks
- Take home and use expose deeper level issues
 - Identify hidden tasks and persistent difficulties
- Interviews and focus groups after take-home use
 - Explore specific evaluation objectives and issues
 - Review designs for next prototype iteration, with boundary objects

Important Human-Centered Practices

- Focus on designer $\leftarrow \rightarrow$ developer interactions
 - Support prototyping without firm requirements
 - Support redesign and detailed design that balances design intentions and implementation concerns
- Useful boundary objects "common language"
 - Used by multiple groups in multiple development phases
 - Each group can interpret object's implications for their interests
 - Representing general cases with implications for design
 - With annotations, objects can represent task characteristics, design intent, design implications
 - Concrete for specific communication
 - Each group can point at the object for common reference

FY02 Demonstration

- ISMA manages air processing systems as specified
 - Reports status and operations of simulated system
 - Makes anticipated response to handle system problem (leak)
- IBRA manages information from ISMA according to team instructions
 - When triggered, makes log entries, constructs event reports, and uses a workspace
- Flight Controllers periodically review information and handle system problems
 - Supported by tools containing ISMA-IBRA information and information from the ECLSS team

Mission Spin-offs

- SMART project: Issue Tracking support for Space Station BME/Surgeon discipline
 - WorkIT prototype evaluated, enhanced, ready for conversion to BME use in missions, for further evaluation and enhancement.
 - User organization will provide funds
 - Prototype will be enhanced for use by other disciplines, starting with ECLSS
- Logger, Report Maker and Team Work Center prototypes are ready for BME evaluation

Benefits of Cooperating Intelligent Agents

- Freedom from some system management tasks
 - ISMA autonomous system control
- Flexibility in directing and changing agent services
 - ISMA adjustable agent with replanning
 - IBRA instructions from users
- Improved understanding and information handling while busy with other tasks
 - ISMA high level event information
 - IBRA log entries, situation reports and analyses
 - Team Work Center tools for information organization and asynchronous communication
 - Addresses today's problems: too many interruptions, hard to find pertinent information from earlier episodes, hard to reuse information

FY03 Plans

- Develop tool for specifying IBRA instructions
- Develop concepts for team-to-agent coordination and communication during anomalies
 - Identify needed agent enhancements
- Advance tools and agent-tools architecture
- Advance and refine human-centered methods
 - Investigate incremental requirements development during rapid prototyping, using boundary objects